Morita Equivalences of Cyclotomic

نویسندگان

  • JUN HU
  • ANDREW MATHAS
چکیده

We prove a Morita reduction theorem for the cyclotomic Hecke algebras Hr,p,n(q,Q) of type G(r, p, n). As a consequence, we show that computing the decomposition numbers of Hr,p,n(Q) reduces to computing the psplittable decomposition numbers (see Definition 1.1) of the cyclotomic Hecke algebras Hr′,p′,n′ (Q ), where 1 ≤ r ≤ r, 1 ≤ n ≤ n, p | p and where the parameters Q are contained in a single (ǫ, q)-orbit and ǫ is a primitive pth root of unity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MORITA EQUIVALENCES OF CYCLOTOMIC HECKE ALGEBRAS OF TYPE G(r, p, n)

We prove a Morita reduction theorem for the cyclotomic Hecke algebras Hr,p,n(q,Q) of type G(r, p, n). As a consequence, we show that computing the decomposition numbers of Hr,p,n(Q) reduces to computing the psplittable decomposition numbers (see Definition 1.1) of the cyclotomic Hecke algebras Hr′,p′,n′ (Q ), where 1 ≤ r ≤ r, 1 ≤ n ≤ n, p | p and where the parameters Q are contained in a single...

متن کامل

ON THE USE OF KULSHAMMER TYPE INVARIANTS IN REPRESENTATION THEORY

Since 2005 a new powerful invariant of an algebra has emerged using the earlier work of Horvath, Hethelyi, Kulshammer and Murray. The authors studied Morita invariance of a sequence of ideals of the center of a nite dimensional algebra over a eld of nite characteristic. It was shown that the sequence of ideals is actually a derived invariant, and most recently a slightly modied version o...

متن کامل

Morita equivalences of Ariki–Koike algebras

We prove that every Ariki–Koike algebra is Morita equivalent to a direct sum of tensor products of smaller Ariki–Koike algebras which have q–connected parameter sets. A similar result is proved for the cyclotomic q–Schur algebras. Combining our results with work of Ariki and Uglov, the decomposition numbers for the Ariki–Koike algebras defined over fields of characteristic zero are now known in...

متن کامل

Construction of Stable Equivalences of Morita Type for Finite-dimensional Algebras I

In the representation theory of finite groups, the stable equivalence of Morita type plays an important role. For general finite-dimensional algebras, this notion is still of particular interest. However, except for the class of self-injective algebras, one does not know much on the existence of such equivalences between two finite-dimensional algebras; in fact, even a nontrivial example is not...

متن کامل

On iterated almost ν-stable derived equivalences

In a recent paper [5], we introduced a classes of derived equivalences called almost ν-stable derived equivalences. The most important property is that an almost ν-stable derived equivalence always induces a stable equivalence of Morita type, which generalizes a well-known result of Rickard: derived-equivalent self-injective algebras are stably equivalent of Morita type. In this paper, we shall...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008